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Rates of Convergence of Gauss, Lobatto, and Radau 
Integration Rules for Singular Integrands 

By Philip Rabinowitz 

Abstract. Rates of convergence (or divergence) are obtained in the application of Gauss, 
Lobatto, and Radau integration rules to functions with an algebraic or logarithmic singularity 
inside, or at an endpoint of, the interval of integration. A typical result is the following: For a 
generalized Jacobi weight function on [-1,1], the error in applying an n-point rule to 
f(x) = Ix - VI-6 is O(n-2+28), if y = +1 and O(n-1+'6) if y E (-1,1), providedwe avoid 
the singularity. If we ignore the singularity y, the error is O( n-1 + 28(log n )6(log log n )?(1 e)) 

for almost all choices of y. These assertions are sharp with respect to order. 

1. Introduction. This paper is a sequel to that of Lubinsky and myself [2] on the 
rates of convergence of Gauss integration rules for singular integrands. In this paper 
we extend the results in [2] in several directions. On the one hand, we extend the 
results for Gauss integration rules to results for Lobatto and Radau rules. This 
extension follows easily from the generalized Markov-Stieltjes inequality for Lobatto 
and Radau rules given in Lemma 3.2 and from a representation of the coefficients 
(or weights or Cotes numbers) in the Lobatto and Radau rules in terms of the 
coefficients in the Gauss rule with respect to a related weight function. A second 
extension is to the special case of Gauss-Jacobi integration rules as well as Lobatto- 
Jacobi and Radau-Jacobi rules for certain values of the parameters defining the 
Jacobi weight function 

(1.1) -(a A)(x) = (1 - x)a(1 + x), A fB > 1. 

In [2], there were some results for a, 1B = ? 4. In this paper, there are similar results 
for 

(1.2) -1 < a= and -l< a, 3 2 

in the Gauss case, and for other ranges of a and 1B in the Lobatto and Radau cases. 
These results are based on the results in [5], where convergence and divergence 
theorems were proved for Gauss-Jacobi rules but no stress was placed on the rates of 
convergence as in this paper and in [2]. Finally, in dealing with endpoint singulari- 
ties, we generalize the weight functions considered in [2] to the generalized Jacobi 
weight functions studied by Nevai and others [3]. 

Since this paper follows closely on [2], we shall only state the theorems generaliz- 
ing those given therein but shall not, in general, give proofs, since they are almost 
identical word-for-word with those in [2], the major difference being that we shall 
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use o(x) dx in place of da(x) used in [2]. Of course, where there are some 
differences in the proofs, we shall indicate this. In Section 2, we shall establish our 
notation and introduce the integration rules. In Section 3, we shall prove the 
generalized Markov-Stieltjes inequality for Lobatto and Radau rules (Lemmas 3.2 
and 3.3), and an additional basic lemma. In Sections 4 and 5, we study rates of 
convergence of our rules for functions with an interior singularity which satisfy 
certain monotonicity conditions, in particular, the functions Ix - yi-8, 0 < 8 < 1, 
and -logIx - yI. In Section 6, we do the same for functions with endpoint 
singularities. Finally, in Sections 7 and 8, we generalize the results of Sections 4-6 to 
more general functions. This is the same structure as in [2], and will facilitate 
reference to that paper. 

2. Notation. Let [a, b] be a finite interval and r, s E {0, 1). We shall be concerned 
with the approximation of the integral 

(2.1) I[f ] fb(x) xd 

by numerical integration rules of the form 
n+s 

(2.2) Inf] = E Xnif(xni). 
i=l-r 

Here, W(x) is a nonnegative weight function which is positive over a subinterval of 
[a, b] (usually almost everywhere) and in L1(a, b), and is such that I[f ] is properly 
or improperly Riemann-integrable. The points xni are the zeros of 

(I + X) (1 - X) spn(X), 

where pn(x) = knXn + ..., kn > 0, belongs to the family of orthonormal poly- 
nomials with respect to the weight function 

(2.3) @(x) = (1 + x)r(1 - x)s@(x), 

and are ordered as follows: 
a = xnO < Xnl < ... < Xnn < Xn,n+l = b. 

The coefficients Xni are interpolatory and are given explicitly in terms of the pn(x) 
by 

(2.4) Ani = Xni(l + xni) (1- xni) i i = 1,...,n, 

where the X ni are the Christoffel numbers 

(n-1 1 

(2.5) A~~~ni k P(Xni) |S i=1 ,n 
k=0 

while if r = 1, (b - a)sXnO = I((b - X)S)- En=lAn(b-X"1)S and if s = 1, 
(b - a)rX n+l = I((x - a)r) -E% Xnj(xnj 

- a)r. 
For r = s = 0, (2.3) reduces to the Gauss rule; for r = 1, s = 0, to the left Radau 

rule; for r = 0, s = 1, to the right Radau rule; for r = s = 1, to the Lobatto rule. If 
we define 

En[f ] = I[fI -In[f ] 

then En[ f ] = 0 whenever f is a polynomial of degree less than 2n + r + s. 
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We shall frequently need to consider some fixed point y e (a, b) at which f (x) 
may, or may not, have a singularity. Throughout Xc(n), Xl(n), Xr(n) denote the points 
from {Xn0, Xnn ,... , Xnn, Xn,n+l} which are, respectively, the closest to y, the closest 
from the left to y, and the closest from the right to y. More precisely, 

IXc(n) Y= min{ lxnj-YI: = 01 ... ,n + 1), 
y - xi(n) =min{ y xnj: xn <1 Y}, 

Xr(n)-Y =-min{ Xnj y xnj > y } 

When xc(n) is not uniquely defined by the above, which is the case only when y is 
midway between Xl(n) and x r(n) we take xC(n) = xI(n). We let 

n 

In [f I = E Xnjf(Xnj) 
j=1 

j:* c(n) 

so that In* avoids the singularity by omitting the closest abscissa to it. Further, we 
let 

E,*f ] = IIf I - In*f]I 

Similarly, we define 
n 

In**[f] = E Xnjf(Xnj), 
j=1 

jIl(n), r(n) 

so that In** avoids the singularity by omitting the closest abscissas from the left and 
right to y. Further, 

E,*[f ] = If - In[**f ]I 

We let Xc(n)' X 1(n), X r(n) denote the coefficients corresponding to Xc(n)g XI(n)g Xr(n), 

respectively. Similarly, xC(n) X 19 AC(n) ? 1 denote x n,c(n) + 1 and X n,(n) + 1 and so on. 
Note that xr(n) = X1(n)+1l 

Definition 2.1. We shall say that the integral of w(x) is bounded above and below 
near y, X E IB(y), if there exist positive constants m and M such that 

(2.6) m < (X2-X1JM (x)dx< M 

for all xl, x2 in a neighborhood of y. 
Thus the Jacobi weight w(af)(x) E IB(y) for all y E (-1,1). 
The usual symbols 0, o, -, - will be used to compare sequences and functions. 

For example, if (Cn), (dn) are sequences of real numbers, 

cn = O(dn) lim sup I Cn/dn < 00, 
n -0oo 

Cn = O(dn) lim Cn/dn = 09 
n -*oo 

Cn d 
dn lim Cn/dn = 1, 

n -0oo 

Cn - dn K1 < Cn/dn < K2, 

for all large enough n, where K1 and K2 are positive constants. 
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Definition 2.2. Let 9 be a finite real closed interval. If f e C[9], the modulus of 
continuity of f in C is 

w((9; e) =max{If(x,) -f(x2)I: IxI - x21 E; xl,x2e C} foranyc > 0. 

We say f E Lip(O) in 9 where 0 < 0 < 1 if wf(9; e) = 0(e0), and we say 
f G Lip(O; q) in 9 where 0> 0 and q is real if wf (;e) =O(e0 log e-I'). 

Definition 2.3. Let C be a real interval. Let k be a positive integer. We shall say f: 
C R is k-absolutely monotone in 9 (k-completely monotone in 9) if 

(2.7) f O, x E C, j = 051525 ... k, 
( ) ~~~((-1) jf(j)(x) >, O, x E C, j = 0, 1,2,...,5k). 

If f is k-absolutely monotone in 9 (k-completely monotone in 9) for all positive 
integers k, we shall say f is absolutely monotone in 9 (completely monotone in C). 

3. Basic Lemmas. The Markov-Stieltjes inequalities in Lemmas 3.2 and 3.3 depend 
on the following fundamental lemma: 

LEMMA 3.1. Let f be (m + 1)-absolutely monotone in [a, f] with strict inequality 
holding in (2.7). Let P(x) be a polynomial of degree at most m. Let 

m1 = total multiplicity of zeros of f-P in [a, a, 

m 2 = total multiplicity of zeros of P in [5, b]. 

Then ml + m2 < m + 1. 

Proof. Freud [1, Lemma 1.5.3] gives a proof for the case (- xc, f] and [t, xc). By 
substituting [a, f] and [t, b] for (- cx, f] and [t, xc) respectively throughout his 
proof, we see that our statement is also true. O 

LEMMA 3.2. Let f (x) be (2n - 1 + s)-absolutely monotone in [a, xflk) for some 
n > 1, 1 - r < k < n + s. Then 

(i) 
k-1 

E Xnjf(Xn) fXf f(x) o(x) dx. 
j=l-r a 

(ii) If, in addition, f (x) is (2n - 1 + s)-absolutely monotone in [a, X kI, then 
kXn 

E XAnf (Xn) |1 f (x) o() d 
j=1-r a 

In particular, 
k-1 X k 

E Anj < J @(x) dx< nJ 1 < k < n + s. 
j=1-r al j=l-r 

Proof. (i) Define a polynomial p(x) of degree < 2n - 2 + s by the 2n - 1 + s 
interpolation conditions 

(3.1A) p(xn1) = { Jk k + 1 n + s; 

(3.1B) P'(Xnj) (f'(xn), J 1,2,. .., k-1, 
1= k +1, k + 2, ... ,n. 
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We shall assume initially that strict inequality holds in (2.7). Let ( E (Xn k- 1 X nk). 

Then by (3.1A, B), f - p has m1 > 2k - 2 zeros in [a, f] and p has M2 > 2n - 2k 
+ 1 + s zeros in [t, b]. Thus ml + m2 > 2n - 1 + s = deg(p) + 1. By Lemma 3.1, 
we have ml + m2 < 2n-1 + s. Thus, m1 = 2k-2 and m2 = 2n-2k + 1 + s, 
and the only zeros of f - p and p in [a, f] and [t, b], respectively, are already listed 
in (3.1A, B). As all zeros of f - p in (a, f] are double zeros, it follows that f - p 
does not change sign in (a, f] for any t < Xnk, and hence f - p does not change sign 
in (a, Xnk). As p(xnk) = 0, we deduce 

(3.2) f(x) > p(x), x E [a, xnk) 

Next, as ( > Xn,k-l was arbitrary, it follows p(x) has 2n - 2k + 1 + s zeros in 
(xn, k-1, b], these being listed in (3.1A, B). Since P(Xn,k-l) = f(X n,k-) > 0 and as 
p(x) has a simple zero at Xnk and double zeros at xnj, j = k + 1, k + 2,..., n, it 
follows that p(x) changes sign at Xnk and 
(3.3) 0 > p(x), x E [xnk, b]. 
Then by (3.2) and (3.3), and by (3.1A), 

Xbf XtoX d b XWXn+s 
k-1 

X f(x)(x) dx> | p()X(x)dx = nAjp(xnj) = Xnjf(Xnj)- 
a1 al j=l-r j=l-r 

Finally, if strict inequality does not hold in (2.7), fE(x) = f(x) + -ex satisfies (2.7) 
with strict inequality for any E > 0. Applying the above inequality to ft, and letting 
E -? 0 + , we obtain the more general inequality. 

(ii) is similar: One defines a polynomial P(x) of degree < 2n - 2 + s by 

f \ 0, ) j=k+1,k+2,. .,n+s; 
|0, j = k + 1,k + 2,...,n + s; 

P(nj) = (O Jk + I; k + 2,.n, 

and uses Lemma 3.1 to deduce 

f (x) < P(x), x E- [a, Xnk], 
0 < P(X), XE [Xnk, bI. 

For (2n - 1 + r)-completely monotone functions, there is the following corollary. 

LEMMA 3.3. Let f(x) be (2n - 1 + r)-completely monotone in (xnk, b] for some 
n > 1, 1 < k < n. Then 

(i) 
n+s b 

E Xnjf (Xnj) < f (x)@co(x) dx. 
j=k+ 1 Xnk 

(ii) If, in addition, f(x) is (2n - 1 + r)-completely monotone in [x nk, b], then 

E Xnif(xnj) > j f (x)@,(x) dx. 
j=k Xk 

Proof. See [2]. 
The following lemma on the asymptotic behavior of coefficients and abscissas will 

be useful in the sequel. 
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LEMMA 3.4. Assume that w(x) E IB(y) for y E (a, b). Then there exist positive 
constants c1, C2, C3, C4 and a neighborhood 9 of y such that for all n andj, 1 < j < n, 

(3.4) xj(i) x E C c1/n < xn, 1 - Xnj < C21n, 

(i) Xnj E C-C/ < A nj < C41n. 

Proof. (i) See [2]. 
(ii) By Lemma 3.4(ii) in [2], the Christoffel numbers Xnj satisfy (ii). Hence, by 

(2.4), (ii) holds. a 

4. Interior Singularities, Part 1. In this section, we investigate the asymptotic 
behavior of En[f ] where f(x) = Ix - -6 or -logIx - y . First, however, we 
establish our basic error estimate which may be applied to functions with a 
singularity on either one or both sides of y. 

LEMMA 4.1. Let f (x) be (2n - 1 + s)-absolutely monotone in [a, y) and (2n - 1 
+ r)-completely monotone in (y, b]. Then 

(i) 

(4.1) fr(n) f (x ) (x) dx < En* * [f ] 
X 

| f I(x) o (x) dx. 
xl(n) Xl(n)-1 

(ii) If y # XC(n), 

(4.2) 
rn 

f(X)(X)dX E nif(Xnj) < En[If I < |r(n f(x)((x)fdx. 
l(n) j= 1(n) l(n) 

(iii) Ifj is the integer such thatj E {I(n), r(n)} \ {c(n)}, then 

(4.3) E,*[f E,**[f ]-Xnif(xn1). 

(iv) If y = Xc(n), 

0 E f ] lXr(nt) f(X) Co(X )d (4.4) o <E 'ff~fxo X)x 
Xl(n)-1 

Proof. See [2]. 
We can now prove a general theorem for "2-sided" singularities: 

THEOREM 4.2. Let (a, b) be a finite interval and y E (a, b). Let o(x) E IB(y). 
Let f(x) be absolutely monotone in [a, y), completely monotone in (y, b], and let 
f (y) = 0. Further assume f(x) grows at roughly the same rate on both sides of y as 
x -- y, that is 

(4.5) f(y-u) - f(y + u) asu O + 

Let An= fll7n f(x) dx, n = 1, 2, 3 .... Then 

(i) En**[f] An, 

(ii) En*[f] ?(n)= 

(iii) En[f] = O(n) - Xc(n)f(xc(n)), 
and X c(n) n 

Proof. See proof of Theorem 4.3 in [2]. 
Thus the rate of convergence to 0 of the error, where the singularity is avoided 

using In* or In", is determined by the asymptotic behavior of ,ln. As a first 
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corollary, we have 

COROLLARY 4.3. Let (a, b) be a finite interval and y E (a, b). Let 

f(x) =!xYI xE(a,b)\{y}, 
O, x =y, 

where 0 < 8 < 1. Assume co E IB(y). Then 

(i) En**[f] n- +8 

(ii) En*[f] 0(n-=+8), 

and there exists 8S E (0, 1) such that, whenever 8 E (80, 1), we have 

(4.6) E,*[f] - n- 

(iii) For those positive integers n for which y * XC(n) 

(4.7) En[f] = -Xc(n)X(n)Y-YI + O(n-1+8) = O(n-llxc(n) Y I) 

where Xc(n) n1. 

Proof. See proof of Corollary 4.4 in [2]. 
Next, we have a corollary for logarithmic singularities. 

COROLLARY 4.4. Let (a, b) be a finite interval and y E (a, b). Let 

f(x) =( loglx -y 1, x E (a,b)\{y}, 
0, ~~x = Y. 

Assume co E IB(y). Then 

(i) E **[f n -'log n. 

(ii) E*[f] = O(n-1 logn). 
(iii) For those positive integers n for which y * xc(n) 

En[f ] = -Xc(n)logIxC(n) l-yI + O(n-1 logn) = o(n-1 loglxc(n) -yI), 

where Xc(n) n -. 

Proof. See proof of Corollary 4.5 in [2]. 
In our next corollary, we have the following analogue of Theorem 2 in Rabinowitz 

[4], for the case where y = cos(7Tp/q) with p/q a rational number. 

COROLLARY 4.5. Let (a, b) = (-1,1) and let s.(x) be the Jacobi weight function 
W(a f3)(x) where a + s, A + r = ? 1/2 and a, A > -1. Let y = cos(7rp/q), where 
p/q is a rational number in (0,1). 

(i) If 

f(x) = fix -yi, x8 

where 0 < 8 < 1, then En[ f ] 0(n - 1+8 

(ii) If 

f(x) = loglx -Yi, x (-l )\{y}, 
(0, x =Y 

then En[f]I = 0(n log n). 
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Proof. See proof of Corollary 4.6 in [2]. 
In our final corollary, we extend the results of Corollary 4.5 for more general 

Jacobi weights. 

COROLLARY 4.6. Let (a, b) = (-1,1) and let s(x) be the Jacobi weight function 
O(af)(X), where a and /3 satisfy the following conditions in addition to the conditions 

a,1 > -1: 

(4.8) -1< a + s = + r or -< + s ,B + r <2 

Let y = cos(7rp/q), where p/q is a rational number in (0, 1). Then the conclusions of 
Corollary 4.5 hold. 

Proof. In [5], it was shown that IY - Xc(n)l > c/n for large n such that y * xc(n). 

The rest of the proof is the same as that of Corollary 4.6 in [2]. 0 

5. Interior Singularities, Part 2. We now prove results of a different character to 
those of Section 4. For example, we show that, for almost all choices of y, 

En I[X -Y I- = o(n-1+28(logn)8(loglogn)E8), 

where e > 1, and that this result is substantially the best possible. This is the 
analogue of Theorem 3 in Rabinowitz [4]. 

THEOREM 5.1. (i) Assume o(x) E IB(y) for each y interior to the interval (a, b). 
Then, given e > 1, there is a set of in (a, b) of linear Lebesgue measure zero with the 
following property: 

(5.1) En[Ix-yI = o(n 128(logn)8(loglogn)E8) 

for all 0 < 8 < 1, whenevery % oE. 

Hence, if 8 < 2, En[Ix -y8] y 0 as n -x oo for almost ally E (a, b). 
(ii) Assume (a, b) = (-1, 1) and that w (x) is the Jacobi weight function c,(a A)(x), 

where a + s, /3 + r = ? 2 and a, / > -1. Then there is a set o in (-1,1) of linear 
Lebesgue measure zero with the following property: 

En[Ix -Y|] >? cn-1+28(logn)8(loglogn)8 

for infinitely many integers n and for all 0 < 8 < 1, whenever y t 9. Here c is a 
positive constant independent of n, y and S. 

Hence, if 8 > 1, E [Ix-y ] -i-* 0 as n -* oo for almost all y E (-1, 1). 
(iii) Assume (a, b) = (-1, 1), and that s.(x) is the Jacobi weight function co(a'f)(X), 

where a and A satisfy (4.8). Then, if y = cos 7T, where t is an irrational number, then 

|En I X Yl ]| >- cn-12 

for infinitely many integers and all 0 < 8 < 1. 

Proof. (i) See [2]. 
(ii) See [2] with v, ,B replaced by a + s, ,B + r, respectively. 
(iii) In [5], it was shown that ly - xc(n)l < cl/n2 for infinitely many integers n. 

Applying Corollary 4.3(iii) and Lemma 3.4(ii), we have that 

En[Ix - YI = c(n)IXc(n) -YI + O(n-18)) 3( 2) (cn-- ) 

for infinitely many n and all 0 <6 <n1. n 



RATES OF CONVERGENCE OF GAUSS, LOBATTO, AND RADAU INTEGRATION RULES 633 

Note that (log log n )E8 in (5.1) may be replaced by (log log n )8(log log log n)E8, and 
so on. Similar remarks apply to part (ii) of the above theorem. The proof of the 
following result is similar to that of Theorem 5.1. 

THEOREM 5.2. Assume X E IB(y) for each y interior to the finite interval (a, b). 
Then there is a set & of linear Lebesgue measure zero (even further of Hausdorff 
dimension zero) such that En[-logIx - Y ] = O(n - logn) whenevery % . 

The results in Theorems 5.1(i) and 5.2 are the best possible in that they cannot 
be improved to include all real numbers in (a, b). This is shown by Example 1 
in [5], where a number y and a subsequence Ink[f ] of the sequence of Gauss 
rules (r = sO0) are constructed for which Inj[logjx - 'I] does not converge to 
I[loglx - 1] 

6. Endpoint Singularities. We discuss here the case where the singularity is at the 
right endpoint b. All the results can be easily rewritten for the case when the 
singularity is at a. If we define the value of the integrand at b to be f (b) = 0, we see 
that in all cases, 

n 

In[f] A \nif(xni). 
i=l-r 

Nevertheless, in our next lemma, we shall have to distinguish between the cases 
s = 0 and s = 1. Even though the end result is the same, the proofs are different. 
Before stating our lemma, we note that for endpoint singularities, there is no need to 
omit any abscissas, so that we can restrict ourselves to the study of En[f ]. 

LEMMA 6.1. (a) Let f (x) be (2n + r + s)-absolutely monotone in [a, b) such that 
limX - b f(x) = oo and define f(b) = 0. Then 

(6f 1) max| bnf(xd(Xnn)f <En[fb]< 
b 

f(x) o(x)dx. 

(b) Let f (x) be (2n + r + s)-completely monotone in (a, b] such that limx af(x) 
- xand define f(a) = 0. Then 

(6.2) max{ jnf(x)@(x)ldx) <En[f]< f (x)@f(x) dx. 

Proof. (a) By Lemmas 3.2(i) and (ii), 
n-1 X n 

E: ;njf (Xnj) < f f(X) W(X)dX < Y. Xnjf (Xnj) 
j=l a j=l 

- In[f] - Xnnf(xnn) <- I[f ] - b 
f(x)co(x) dx < Injf ]I 

Xnn 

It remains to show that In[f ] < I[f 1. When s = 1, this follows from Lemma 3.2(i) 
with k = n + 1 since In[f ] = Ey2=1-rXnjf(Xnj). When s = 0, we shall prove that 
In[ f]< I [ f ] using the ideas in Freud's proof of Lemma 111.1.5 in [1], which appears 
to be faulty. 

Let E > 0 be arbitrary and define fE =f(x) + ex2n?r. Let H(x) be the poly- 
nomial of degree 2n + r - 1 satisfying 

H(Xnj) =fE(Xnj), j = 1 - r(1)n, 

H'(X -) = f '(Xnj) j = 1(1)n. 
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As is well known, Ij[fE] = Ij[H] = I[H]. Hence, it suffices to show that G(x) > 0 
in (a, b), where G(x) = f,(x) - H(x), since this implies that I,,[f,] < I[fj, and by 
letting E tend to zero, we get that In[f] < I[f ]. Now, since f,(x) -x oo as x -b, 
G(x) > 0 in a neighborhood of b. Furthermore, G(x) has n double zeros in (a, b), 
and when r = 1, it has a simple zero at x = a for a total of 2n + r zeros. Now, if 
G(xo) < 0 for some xo E (a, b), then G(x) would have a zero of odd multiplicity at 
some point in (a, b) and the total number of zeros would be at least 2n + r + 1. By 
Rolle's theorem, there would exist a point ( E (a, b) such that G(2n+r)(q) = 0. But 

H(2n+r)(x) 0 and f(2n+r)(q) = f(2n+r)(t) + e(2n + r)! > 0, since f(2n+r)(x) > 0 
in (a, b). This contradiction proves our result. 

(b) is similar. O 
Unfortunately, the behavior of Xnn, b - xnn, Xnn - 

Xn,n-l and so on, have not 
been thoroughly investigated for general weights and there seems to be no analogue 
of Lemma 3.4. Thus we are not able to prove results as general as those in Sections 4 
and 5, but can prove results for the generalized Jacobi weight functions. These 
weight functions were studied by Nevai and others and are defined as follows: 

Definition 6.2 [3]. o is a generalized Jacobi weight function (co E GJ) if o can be 
written in the form 

m 

(6.3) (x) = (x)(1 - X) H Itk - x Ik (1 + ) 
k=1 

for -1 < x < 1, where -1 < tm < tm < < t1 < 1, m > O, a,3 VYk> -1, 
k = 1, ...m an d + >, Osati sfi e s +-1 E= L`[ -1, 1]. 

Note that if co E GJ, then for any y E (-1,1) such that y * tk, k = 1, ... m, 

co E IB(y). Hence, the results of Sections 4 and 5, in particular Corollaries 4.3 and 
4.4 and Theorems 5.1(i) and 5.2, hold for generalized Jacobi weight functions. 

The two basic properties of GJ weights that we need are given in [3, p. 673]. 
Taking into account that if co E GJ, then co E GJ, these properties are 

(6.4) ( 1 - X/n 2< X < C(1 -2 

(6.5) C30 - Xnn) 
a 

/1+ n < A~nn < C40 - Xnn) 
a /2 sn, 

where, as before, xnn is the nth root of the polynomial of degree n orthogonal with 
respect to co(x), and Xnn is the Christoffel number corresponding to xnn. The 
positive constants c1, C2, C3 and C4 are independent of n. 

THEOREM 6.3. Let (a, b) = ( - 1, 1) and let o(x) be a generalized Jacobi weight 
function as given by (6.3). Then 

(a) En[(1 - x)-8] = O(n-2a-2+28) if a - 8 > -1 and 8 > 0. Further, there 
exists a positive q such that 

En[(1 -x) 
- - n-2a-2+28 whenever 8 E (1 + a- l, 1 + a). 

(b) En [-log(1 - x)] = O(n -2a-2 log n). 

Proof. (a) When m > 1 in (6.3) we choose n sufficiently large so that xnn > tl. 

Then, by (6.1) and (6.4), 

0 < En[(' - Xy] < c(l + a - 8)1(1 - xnn)l?a8 = 0(n ) 

for some positive constant c. 
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Further, by (6.5), 

A f(x ) = nn(l -Xnn) >6 C3 (- a+1/2-8 Xnnf(Xnn) -r( - 
> 

c Xnn 
(1+ Xnn)( -Xnn)s 2n Xflflj 

Hence, by (6.1), 

En ( -x)61I > w(x)(1 - x) dx - 2- (1 -Xnn) 
nn 

(1 Xn) 
-+a+l 

C +/- 
(1 + a a S 2 2nx)1/21 

)-8+a+lt c _ 3 -1 -/2) 

X (1 - xnn)y [1 + - C 

Hence 

3q > 0 EEn(1-x)] > c(1 -Xnn)a+ 
8 

whenever 8 e (1 + a - l,1 + a); i.e., 

En[(l-x) ] n-2a-2+28. En[1- X) n 

(b) is similar to the first part of (a). 5 
For Jacobi weights, we obtain the following more precise result. 

THEOREM 6.4. Let (a, b)= (-1,1), and let co(x) be the Jacobi weight function 
1W(a )(x), a, fi> -1. Let J.(x) be the Bessel function of the first kind of order v and 

jl its first positive zero, where v = a + s. 
(a) Let 0 < 8 < 1 + a and 

s= 2-fl(fip/2)-1-?+8n2a+2-28(I + a -a)En[(1- x)I 

Then 

(6.6) max{O, 1 - C2(v)(I + a 8) < liminf snS limsup snA 1, 
n - oo n ,noo 

where 

(6.7) co(v) =2/(jj,,JP (jj)) 

(b) Let 

t = 2-t-1( j2vn/2) 1n2a+2(logn) (1 + a)En[-log(1-x)]. 

Then 

(6.8) max{0,l - c2(V)(I + a)) S liminf tn < limsup tn < 1. 
0~~~~~-0 n -oo n -oo 

Proof. For the Jacobi weight function we have that 

Z5(X) = (1 - X)v(1 + X),+r 
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Now, by Theorem 8.1.2 in Szego [6] (cf. [2, p. 233]), 

(6.9) lim n2(1 - xnn) =fji^/2. 
n - oo 

Hence, 

f (1 - x)%.w(x) dx 28(1 - x,,)'+O/(1 + a - 

(6.10) Xnn 

j 2n(/(2f2))l?a8/(1 + a- 

by (6.9). Further, by (15.3.11) in Szego [6, p. 350], 

fl-2++r+l( j1 )2V { j,(jl )} -2 -2v-2 

so that 

(6.11) ~nn(l - Xnn)8 = nn(' - Xnn) (1 + xnn) 

~ 2v?1( ji/2)2v { J,(ilv)} -2 -2v-2( j2/(2 2)) 
s 

Then (6.6) follows easily from (6.1), (6.10), (6.11), and (6.7). 
(b) is similar. o 

7. Interior Singularities for More General Functions. We now extend the results of 
Sections 4 and 5 to the function f(x) = 4(x)g(x), where g(x) is smooth and 

4(x) = Ix - yI-8 or 4(x) = -logIx - yI. Throughout, without further mention, we 

assume y E (a, b). 
We state first our result on avoiding the singularity. 

THEOREM 7.1. Assume o(x) E IB(y). Assume g E C[a, b]. 
(i) Let f(x) = Ix -yl-8g(x), x E [a,b]\{y}, where 0 < 8 < 1. 
(a) If g E Lip(1 - 8) in [a, b] and g E Lip(1) neary, then 

En**[f= O(n-1+8), En*[f] = O(n-+8). 

(b) If, further, there exists 0 < e < 8 such that g E Lip(1-e) in [a, b] and 

g' E Lip(8 - e) neary, and if g(y) 0 0, then 

En**[f] g(y)n-1+8. 

Further, E"[ f] g(y)n -1+8 if 8 is close enough to 1. 
(ii) Let f (x) = (-loglx -yl)g(x), x E [a, b]\{ y}. 
(a) If g E Lip(1; -1) in [a, b] and g E Lip(1) neary, then 

En**[f= O(n-logn), E* [f] = O(n log n). 

(b) If, further, there exists 0 < q < 1 such that g E Lip(1; -1 + q) in [a, b] and 
g' E Lip(0; q) neary, and if g(y) + 0, then 

E,**[f] g(y)n-1logn. 

Proof. See the proof of Theorem 7.5 in [2]. 
The following result analyzes the error when the singularity is ignored. 



RATES OF CONVERGENCE OF GAUSS, LOBATTO, AND RADAU INTEGRATION RULES 637 

THEOREM 7.2. (i) Assume o(x) E IB(y) for each y interior to (a, b). Then, given 
E > 1, there is a set gE in (a, b) of linear Lebesgue measure zero with the following 
property: If g E Lip(1) in [a, b], then 

En [ x-Y Ig] = O(n -1?28(log n )8(log log nY) 

for all 0 < 8 < 1, whenevery i S 
Hence, if 8 < 2, Ej[x - yl-8g] - 0 as n -x oo for almost ally E (a, b). 
(ii) Assume (a, b) = (-1,1), and w(x) is the Jacobi weight function c,(al)(x), 

where a + s, /3 + r = + 2. Then there is a set g in (-1,1) of linear Lebesgue 
measure zero with the following property: If g E Lip(1) in [a, b], then 

En[Ix -Y g]| > c g(y) In-1+28(1ogn)8(logogn)8 

for infinitely many integers n and all 0 < 8 < 1, whenever y ? 9. Here c is a positive 
constant independent of g, n, y, and S. 

Thus, provided the set of zeros of g has linear Lebesgue measure zero, and if 8 2 

EnI[Ix -yI --g I 0 as n -x oc for almost ally E [a, b]. 
(iii) Assume (a, b) = (-1, 1) and that w(x) is the Jacobi weight function ,(a fA)(x), 

where a and /8 satisfy (4.8). Then, if y = cos 7T, where t is an irrational number, and 
g E Lip(1) in [-1, 1], then 

En[Ix -Y gI | > Cljg(y) In-1+28 

for infinitely many n and all 0 < 8 < 1. Here, c is a positive constant independent of g, 
n, and &. Hence, for any y 3 g(y) # 0, if 8 >, 2, E [Ix-yV8g] - 0 as n -x 0. 

Proof. See the proof of Theorem 7.6 in [2]. 
In a similar fashion, one can use Theorem 5.2 to prove the following result for 

ignoring a logarithmic singularity: 

THEOREM 7.3. Assume w(x) E IB(y) for each y interior to (a, b). Then there is a 
set &' of linear Lebesgue measure zero (even further of Hausdorff dimension zero) with 
the following property: If g E Lip(1) in [a, b], then 

En [(-log|1x-Y 1)g] = O(n-1 logn), whenevery o. 

8. Endpoint Singularities for More General Functions. In extending the results of 
Section 6 to more general functions, we shall assume throughout that (a, b) = (-1,1) 
and that o(x) is a generalized Jacobi weight function given by (6.3). Our main result 
for endpoint singularities is as follows: 

THEOREM 8.1. (i) Let 0 < 8 < min{1,1 + a}, and let 1 be the smallest integer 
> 2(1 + a - 8). Let g E C[ -1, 1] and assume there exists q > 0 such that g0)'(x) 
E Lip(8; q) near 1. Then 

En (1- x) 8g] = 0(n-2(1+a-8) 
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(ii) Let k be the smallest integer > 2(1 + a). Let g E Ck[- 1, 1] and assume there 
exists q > 1 such that g(k)(x) E Lip(O; q) near 1. Then 

En [(log(' - x))g] = O(n-2(1+a) logn). 

Proof. See the proof of Theorem 8.2 in [2] with v replaced by a. 
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